Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes.

نویسندگان

  • Garnet Kin-Lic Chan
  • Troy Van Voorhis
چکیده

We describe the theory and implementation of two extensions to the density-matrix renormalization-group (DMRG) algorithm in quantum chemistry: (i) to work with an underlying nonorthogonal one-particle basis (using a biorthogonal formulation) and (ii) to use non-Hermitian and complex operators and complex wave functions, which occur naturally in biorthogonal formulations. Using these developments, we carry out ground-state calculations on ethene, butadiene, and hexatriene, in a polarized atomic-orbital basis. The description of correlation in these systems using a localized nonorthogonal basis is improved over molecular-orbital DMRG calculations, and comparable to or better than coupled-cluster calculations, although we encountered numerical problems associated with non-Hermiticity. We believe that the non-Hermitian DMRG algorithm may further become useful in conjunction with other non-Hermitian Hamiltonians, for example, similarity-transformed coupled-cluster Hamiltonians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate th...

متن کامل

Hermitian solutions to the system of operator equations T_iX=U_i.

In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...

متن کامل

A numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators

Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...

متن کامل

Excited-State Geometry Optimization with the Density Matrix Renormalization Group, as Applied to Polyenes.

We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al. [J. Chem. Theor. Comput. 2013, 9, 4462]. We introduce a DMRG wave function maximum overlap following technique to facilitate state-specific DMRG excited-state optimization. Using DMRG configuration interaction (DMRG-CI) gradients, we relax the lo...

متن کامل

Convergence Acceleration Techniques for Non-Hermitian SCF Problems

Conventional convergence acceleration techniques for the SCF procedure like the direct inversion in the iterative subspace and the level-shifting can not be applied in the general case of non-Hermitian Fock operators. The commutator of the Fock matrix and the density matrix do not vanish upon convergence of nonHermitian SCF equations and hence the usual error vector choice is not applicable. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 20  شماره 

صفحات  -

تاریخ انتشار 2005